April 2 - 2:30 PM to 4:00 PM
Presented by Gavin Jones, Sr. Application Engineer
Uncertainty is an inescapable reality that can be found in nearly all types of engineering analyses. It arises from sources like measurement inaccuracies, material properties, boundary and initial conditions, and modeling approximations. Uncertainty Quantification (UQ) is a systematic process that puts error bands on results by incorporating real world variability and probabilistic behavior into engineering and systems analysis. UQ answers the question: what is likely to happen when the system is subjected to uncertain and variable inputs. Answering this question facilitates significant risk reduction, robust design, and greater confidence in engineering decisions. Modern UQ techniques use powerful statistical models to map the input-output relationships of the system, significantly reducing the number of simulations or tests required to get accurate answers.
This tutorial will present common UQ processes that operate within a probabilistic framework. These include statistical Design of Experiments, statistical emulation methods used to create the simulation inputs to response relationship, and statistical calibration for model validation and tuning to better represent test results. Examples from different industries will be presented to illustrate how the covered processes can be applied to engineering scenarios.
This is purely an educational tutorial and will focus on the concepts, methods, and applications of probabilistic analysis and uncertainty quantification. SmartUQ software will only be used for illustration of the methods and examples presented. This is an introductory tutorial designed for practitioners and engineers with little to no formal statistical training. However, statisticians and data scientists may also benefit from seeing the material presented from a more practical use than a purely technical perspective.
There are no prerequisites other than an interest in UQ. Attendees will gain an introductory understanding of Probabilistic Methods and Uncertainty Quantification, basic UQ processes used to quantify uncertainties, and the value UQ can provide in maximizing insight, improving design, and reducing time and resources.